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RAPID COMMUNICATION
Profiling the cell diversity and tissue
structure of aqueous humor circulatory
system in human eyes using spatial
single-cell RNA sequencing
Elevated intraocular pressure (IOP) is recognized as a sig-
nificant contributor to the development of various ocular
diseases, especially glaucoma. The delicate balance be-
tween the generation and drainage of aqueous humor (AH) in
the anterior chamber angle regulates the real IOP level.
Despite extensive research, our understanding of the cellular
components, tissue structure, and functional heterogeneity
within the AH circulatory system (AHCS) remains incom-
plete, hindering the progression of effective and accessible
treatment strategies for IOP intervention. Therefore, the
state-of-the-art spatiotemporal single-cell omics stands
poised to furnish an invaluable spatial cellular map of the
AHCS, thereby laying the foundation for subsequent in-depth
investigations. Meanwhile, this innovative approach prom-
ises to offer novel insights into the pathogenesis and man-
agement of IOP regulation. Here, we utilized nanoscale
resolution-spatial enhanced resolution omics-sequencing
(Stereo-seq1) to obtain in situ gene expression profiles of
AHCS in human eyes (Fig. S1A). We generated two optimal
cutting temperature compound-embedded chips of the
trabecular meshwork (TM) and surrounding tissue from four
samples (Table S1), which were later cut into layers of 10-
mm-thickness cryosections for Stereo-seq and hematoxylin-
eosin staining. Considering that transcript capture was per-
formed at a subcellular level using a DNA nanoball
sequencing technique, we integrated a semi-automated
spatial omics methodology with cell segmentation using the
GEM3D-toolkit (https://github.com/BGI-Qingdao/GEM3D_
toolkit) to acquire a single-cell resolved transcript of AHCS
in spatial scenarios. This method allowed us to partition two
Stereo-seq chips into 60,638 putative single cells by assigning
transcripts to each defined cell area at single-cell resolution
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(detailed in supplementary methods and materials and
Fig. S1B). After the following quality control, we finally
detected 978.5 DNA nanoball spots per cell area on average,
with the per-cell detection of 885.4 unique molecular
identifiers and 445.3 genes. Chip1 and Chip2 were composed
of 32,081 and 28,557 cells, respectively, covering 24,775
genes (Fig. S1C and Table S2).

Subsequently, we independently annotated the cell type
for each chip based on its gene expression patterns.
Through the utilization of canonical marker genes (Table
S3), a total of 15 shared cell clusters across both chips were
identified. These encompassed smooth muscle, iris pigment
epithelium, ciliary muscle, ciliary body epithelium, corneal
epithelium, TM cells, fibroblasts, Schwann cells, erythro-
cytes, conjunctiva, vessel endothelium, mast cells, mela-
nocytes, stromal cells, and small amount cells of unknown
type (Fig. 1A; Fig. S2A, B). Among them, TM was a reticu-
late structure located in the anterior chamber angle and
played a crucial role in controlling the outflow of AH. We
verified the enrichment signature scores of TM marker
genes and located the area of TM cells in the whole tran-
scriptomics map, consistent with previous anatomical views
at the iridocorneal angle2 (Fig. 1B, C). Moreover, we
discovered a population of low-quality stromal cells, char-
acterized by fewer unique molecular identifiers and lower
levels of gene capture, which corresponded to the collagen-
covered sparse corneal and scleral regions in the analyzed
samples (Fig. S2C). We filtered this cell cluster and the cells
of unknown type in downstream analyses.

To further elucidate the heterogeneity of the TM area,
the harmony algorithm was employed to integrate cell sub-
cluster analysis of TM cells from two distinct chips. We
identified the anterior TM area and the near-juxtacana-
licular TM area as distinct functional portions (Fig. 1D). The
former showed high expression levels of fibrosis-related and
behalf of KeAi Communications Co., Ltd. This is an open access
by/4.0/).
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Figure 1 Spatial transcriptome of aqueous humor circulatory system (AHCS) in human eyes. (A) Major cell types of AHCS
identified by spatial transcriptome and the uniform manifold approximation and projection (UMAP) plot of these cell types (left
bottom). chip1_s2 is a representative example. (B) The boxplots showing the enrichment signature of trabecular meshwork (TM)
marker genes (composed of MYOC, APOD, and MGP) across the whole AHCS cell type. The Y axis shows the signature scores for TM
cells. Colors denote individual cell clusters. (C) Spatial expression of selected TM marker genes (MYOC, APOD, and MGP) in
representative chip1_s2 to identify the TM area’s tissue location. The spectrum of color represents the mean expression levels of
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melanin production markers such as CFD and TYRP1, while
the latter exhibited canonical expression of AH outflow-
related functional markers including CHI3L1, ANGPTL7, and
MYOC (Fig. 1E; Figs. S3AeC and Table S3). Our feature
genes’ mapping analysis revealed significant spatial hetero-
geneity between two groups of cells, with the near-juxta-
canalicular TM subcluster having a smaller cell count and
connection to Schwann cells (Fig. 1F). The anterior TM
subcluster, located at the forefront of the near-juxtacana-
licular subcluster, may serve as a transitory zone for AH
outflow. Further immunohistochemical staining using spe-
cific antibodies against CFD and MYOC validated these find-
ings in adjacent TM regions (Fig. S3D). The results indicated
that CFD expression was higher in the anterior TM region
relative to the near-juxtacanalicular region, while MYOC
showed the reverse pattern. Quantitative analysis suggested
similar proportions among different chips for almost all cell
types (Fig. S3E). On the other hand, specific TM gene
expression patterns consistently corresponded to their
functional specificity in different regions (Fig. 1G and Table
S4). Our findings of the gene enrichment analysis suggested
that the anterior TM region was involved in crucial biological
functions such as cell-substrate adhesion, connective tissue
formation, sensitivity to transforming growth factor-beta
and oxygen levels, and cellecell WNT signaling. The near-
juxtacanalicular TM region played a significant role in
heightened pigment melanin biosynthesis and lipid steroid
catabolic metabolism, which were essential for the devel-
opment and homeostasis of the TM subcluster. Additionally,
the near-juxtacanalicular area of TM cells was reported to
secrete various factors including chemokines, degradative
enzymes, and protein components of the extracellular ma-
trix, supporting prolonged extracellular matrix remodeling
and modified trabecular cell activity.3 Our results revealed
that this subcluster had similar functional enrichment,
emphasizing the relevance of chemotactic migration and
tissue remodeling pathways in controlling IOP homeostasis.

To ascertain the expression pattern of glaucoma-associ-
ated genes and meet the future requirements for precise
cellular targeted therapy, we employed spatial profiling to
examine the expression patterns of certain specific genes
across various cell types. Specifically, we considered well-
known monogenic causes (Mendelian genes) such as ANGPT1
and TBK1, as well as genes implicated in risk factors from
genome-wide association study (GWAS), such as TMCO1 and
TXNRD2. Also, we screened an additional 93 genes from the
the marker genes. To improve the contrast ratio, a loess fit offered
plot of individual TM cells. Blue-green points show the anterior area
of TM cells. (E) The dot plot showing the 6 signature gene express
resents the proportion of cells expressing the particular markers, an
the markers (log1p transformed). (F) Spatial expression of marke
spectrum of color represents the mean expression levels of the mark
TM in the whole spatial transcriptome; CHI3L1, ANGPTL7, and MYO
tree plot showing the hierarchical clustering of gene ontology enri
expressing the particular pathways, and the spectrum of color indic
showing cell type-specific expression patterns of several represent
online Mendelian inheritance in man (OMIM) dataset.4 A total
of 111 genes were selected, each expressed in at least 10% of
cells in every cell type, serving as a filtering criterion. The
respective expression profiles of these genes are depicted in
Figure 1H, with the comprehensive list available in
Figure S3F. The genes subjected to testing are detailed in
Table S5. As Figure 1H shows, several susceptibility genes
associated with high IOP, such as MYOC, CDH11, and LOXL1,
were found to be strongly expressed in the near-juxtacana-
licular TM cells, demonstrating their cell-specific expression.
There were also genes such as ANKH, PRDM5, and CTTNBP2,
which were expressed in TM cells as well as in non-TM cells.
It is noteworthy that genes such as GAS7 (expressed in
Schwann cells), EST1 (expressed in melanocytes), and CAV1/
CAV2 (expressed in both endothelial types, ciliary muscle,
and vessel endothelium) demonstrated elevated expression
levels in the non-TM region compared with the TM region.
TBK1 and FOXC1, which were highly heritable features and
significant risk factors for the progression of congenital
glaucoma and normal-tension glaucoma, showed varied
regional expression patterns. TBK1 was primarily localized to
the ciliary body epithelium, whereas FOXC1 was preferen-
tially localized to the ciliary muscle, followed by the near-
juxtacanalicular TM cells and smooth muscle cells. Thus,
these results suggested that while abnormalities in the TM
region were evident contributors to increased IOP, genes
that regulate IOP may not act just within the TM. Cell-tar-
geted therapy necessitated consideration of the specific
cells in which the edited gene was expressed. In addition to
exploring genes associated with glaucoma, we sought to
scrutinize the specific gene expression patterns of extra-
cellular matrix components within the anterior chamber
angle, specifically including collagens, fibronectin, laminins,
elastin, and fibrillin microfibrils (Fig. S3G). This exploration
was prompted by existing literature suggesting their impli-
cation in the pathogenesis, progression, and treatment of
glaucoma.5 We observed the selective expression of many
genes encoding collagens and fibronectin, such as COL6A3,
COL1A1, and FN1, in the near-juxtacanalicular TM cells.
However, the expression of COL1A2was noted in both the TM
cells of the near-juxtacanalicular region and the ciliary body
epithelium. Regarding the encoding genes of laminins and
elastin and fibrillin microfibrils, most were uniquely
expressed in the epithelium or ciliary muscle. Only LAMC3
was predominantly expressed in the anterior TM cells.
Finally, given the potential of our dataset to offer robust
by SPATA2 was used to smooth the expression values. (D) UMAP
of TM cells. Purple points show the near-juxtacanalicular area
ions across the TM cellular clusters. The size of the dots rep-
d the spectrum of color indicates the mean expression levels of
r genes of TM subpopulations in representative chip1_s2. The
er genes. CFD and TYRP1 were used to map the anterior area of
C were used to map the near-juxtacanalicular TM area. (G) The
ched terms. The size of the dots represents the ratio of genes
ates the significance of the current pathway. (H) The heatmap
ative genes implicated in glaucoma (as detailed in Fig. S3F).
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support for future research into the tissue structure and
functional dynamics of AHCS, unveiling mechanisms under-
lying ocular diseases and potential therapeutic approaches,
we provided a website link for interactive exploration of our
data to expand our research: https://www.bgiocean.com/
humaneye/AHCS/.

In conclusion, by employing Stereo-seq, our study pro-
vided a valuable spatial single-cell map of AHCS. The
approach of data processing utilized in this study could
serve as a prospective case for subsequent spatial-omics
research endeavors. Moreover, the crucial TM organization
within the AH outflow pathway was identified into two
distinct functional and spatially heterogeneous sub-
populations, namely the anterior TM area cells and the
near-juxtacanalicular TM area cells. The gene expression
pattern mapping of glaucoma-related and potential thera-
peutic pathways provided compelling evidence for future
targeted cell therapies. An interactive exploration website
was also established for accessing the data resources.
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